Main Menu

Drop Down MenusCSS Drop 

Down MenuPure CSS Dropdown Menu
Showing posts with label water. Show all posts
Showing posts with label water. Show all posts

Friday, 14 November 2014

A Universe of Blue Dots? --"Water Common During the Formation of All Planetary Systems"

Follow us on Google+ , Twitter and Facebook

pic-hyper-terra

The new SciFi blockbuster, Interstellar, shows astonauts from post apocalyptic earth, destroyed by what appears to be a modern dust-bowl, catapulted into the unknown of outer space in the hopes of finding a new home for the human race, only to discover an extraterrestrial tidal wave on a distant exo planet. How realistic is the premise of an alien water planet? New findings suggest it's based on solid science.
"This is an important step forward in our quest to find out if life exists on other planets," said Tim Harries, from the University of Exeter's Physics and Astronomy department, who was part of the research team. "We know that water is vital for the evolution of life on Earth, but it was possible that the Earth's water originated in the specific conditions of the early solar system, and that those circumstances might occur infrequently elsewhere. By identifying the ancient heritage of Earth's water, we can see that the way in which our solar system was formed will not be unique, and that exoplanets will form in environments with abundant water. Consequently, it raises the possibility that some exoplanets could house the right conditions, and water resources, for life to evolve."
The implication of these findings is that some of the solar system's water must have been inherited from the Sun's birth environment, and thus predate the Sun itself. If our solar system's formation was typical, this implies that water is a common ingredient during the formation of all planetary systems.

To date, the Kepler satellite has detected nearly 1,000 confirmed extrasolar planets. The widespread availability of water during the planet-formation process puts a promising outlook on the prevalence of life throughout the galaxy.

A pioneering new study has shown that water found on Earth predates the formation of the Sun – raising hopes that life could exist on exoplanets, the planets orbiting other stars in our galaxy. The ground-breaking research set out to discover the origin of the water that was deposited on the Earth as it formed.

It found that a significant fraction of water found on Earth, and across our solar system, predates the formation of the Sun. By showing that water is 'inherited' from the environment when a star is born, the international team of scientists believe other exoplanetary systems also had access to an abundance of water during their own formation.

As water is a key component for the development of life on Earth, the study has important implications for the potential for life elsewhere in the galaxy.

Scientists have previously been able to understand the conditions present when stars are formed by looking at the composition of comets and asteroids, which show which gases, dust and, most importantly, ices were circling the star at its birth.

The team of international scientists were able to use 'heavy water' ices – those with an excess of water made with the element deuterium rather than hydrogen – to determine whether the water ices formed before, or during, the solar system's formation.

Tuesday, 28 October 2014

Spacecraft Spots Ice at Mercury's North Pole

planet-mercury-made_35c1c2aa5d2b4715

NASA 's MESSENGER spacecraft has sent back its first visible-light images of water ice on Mercury, the tiny charbroiled planet that orbits closest to the sun.

The findings, described in the journal Geology, reveal that the ice deposits look surprisingly "fresh" -- and hint that water could have been very recently delivered to rocky little Mercury.

Even though Mercury sits less than 36 million miles from the sun -- which is less than two-fifths of the Earth's comfortable 93 million miles from sun -- some ice still manages to cling to the planet's surface. That's because the ice lies at the poles, in permanently shadowed regions inside craters that are eternally shielded from sunlight and remain very, very cold.

More than two decades ago, ground-based radar observations picked up signs of this polar ice, and the MESSENGER spacecraft later lent support to the idea with its own suite of instruments. But it's tough to actually see these permanently shadowed regions with the spacecraft's visible-light camera because, well, it's dark there. But recently, the team was able to refine the images of the ice-deposit surfaces with the help of what little light was reflecting off the crater walls.

The scientists examined Prokofiev, which at roughly 69.6 miles in diameter is the largest crater at Mercury's north pole thought to have water-ice deposits. There, the surface ice had a "cratered" texture -- showing that it was placed there more recently than the smaller underlying craters.

And in other spots, such as Berlioz crater, the researchers found that the water ice was "covered by a thin layer of dark, organic-rich volatile material." The boundaries of those icy regions were surprisingly sharp -- they hadn't been in place long enough to get smoothed out.

"The sharp boundaries indicate that the volatile deposits at Mercury's poles are geologically young, relative to the time scale for lateral mixing by impacts," the study authors wrote, "and either are restored at the surface through an ongoing process or were delivered to the planet recently."

To put that idea in perspective, estimates indicate that there could be roughly enough water-ice on Mercury to fill Lake Ontario. And if at least some of that water is indeed being delivered to the planet, it sheds new light on dynamics in the inner solar system, the scientists said.

"If Mercury's currently substantial polar volatile inventory is the product of the most recent portion of a longer process," the study authors wrote, "then a considerable mass of volatiles may have been delivered to the inner Solar System throughout its history."